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Young's modulus of porous materials 
Part 2 Young's modulus of porous alumina with 
changing pore structure 

JAMES C. WANG*  
State University of New York, Stony Brook, New York 11794, USA 

The Young's modulus of porous alumina was determined by both sonic and bending tests. 
The pore structure of the specimens changes from interconnected at high porosities to 
disconnected at low porosities. The Young's modulus data can best be treated by the 
correlation proposed in Part 1 of this paper. 

1. Introduction 
Experimentation [1, 2] and empirical equations 
[3, 4] have been principally used to study the 
Young's modulus of porous materials. Theoretical 
equations are limited to isolated pores [4, 5] and 
are being indiscriminately used for open pores. 
Only recently has the subject of relating Young's 
modulus to the changing pore structure (from 
open pores to closed pores) been analysed, in 
Part 1 of this paper [6]. 

According to Part 1 the Young's modulus, E, 
is a complicated function of porosity, p, an 
approximate solution being proposed: 

E = E0 exp [-- (bp + cp2)]. (1) 

where E0 is the zero-porosity Young's modulus, 
and b and c are nonnegative materials constants. 
A higher-order term (or terms) may be included in 
the exponential polynomial for wider porosity 
ranges and for improved accuracy. 

The model thus developed is highly idealized, 
with many assumptions. But, as shown in Part 1, 
most of the assumptions (e.g. simple cubic array, 
no-growth condition) are not essential and, further- 
more, powder size can vary from specimen to 
specimen. Nevertheless, the assumption of mono- 
sized powder distribution within a given specimen 
and the assumption of the identical powder array 
for all specimens are still required. Unfortunately, 
these two required assumptions are very likely 

to be violated in reality because: (a) for any 
prolonged heating during densification, grain 
growth, followed by particle growth, will occur, 
undoubtedly altering the stacking pattern from 
specimen to specimen; and (b) statistically speak- 
ing, there are fast-growing as well as stow-growing 
particles, resulting in a nonuniform particle-size 
distribution within a specimen. 

Therefore, it is of great interest to determine if 
Equation 1 can satisfactorily describe nonideal, 
real systems. 

In this paper the Young's modulus of porous 
alumina will be studied, in situations where the 
porosity percentage not only changes, but changes 
also occur from interconnected to disconnected 
pore structure. 

2. Experimental procedure and results 
2.1. Materials 
Porous cylindrical A1203 rods (2  2.2 cm diameter • 
11.3 cm) were supplied by Astro Met Associate, 
Inc.t The density of the specimens was heavily 
populated around 57%, 61%, 68%, 71%, 77%, 
80%, 93% and 95% of the theoretical density 
(TD), as shown in Fig. 2. These A1203 rods were 
in two batches. Following the manufacturer's 
nomenclature, the first batch was designated the 
"100 Series" and the second batch was the "300 
Series". The difference between the two series was 
the powder shape: the 100 Series was comprised 
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of spherical powder while the 300 Series was com- 
prised of "egg-shaped" powder. 

Scanning electron microscopy (SEM) revealed 
that the stacking pattern was highly irregular 
for both series and could not be described by 
any known array, such as simple cubic, bcc ,  
f ee ,  etc. The pores were interconnected at low 
densities (=  57%TD ~ 80%TD), while at high 
densities ( = 9 3 % T D ~ 9 5 % T D )  the pores were 
disconnected or only partially connected. The 
particle size was --~ 0.5/~m for specimens with 
densities between 57% TD ~ 75% TD and --~ 1.0/am 
for specimens with densities between 75%TD 
82%TD. For densities greater than 90%TD, the 
violation of the monosize requirement was 
apparent, each specimen being made up by particles 
of various sizes: 5 ~ 10/am for the 100 Series and 
5 ~ 15/am for the 300 Series. 

Since A1203 can exist in several polymorphic 
forms, X-ray analysis was used to identify the 
crystal structure. The result indicated that the 
alumina was a-A1203 trigonal corundum. 

2 . 2 .  Young's modulus determination 
The Young's modulus was determined 
dynamically and statically. 
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The dynamic Young's modulus was measured 
from the cylindrical Al2Oa rods by a sonic-velocity 
technique. A sonic-wave generator and a sonic-wave 
detector were attached to the opposite ends of a 
cylindrical rod and the sonic velocity in the axial 
direction was measured. Knowing the velocity, the 
Young's modulus was readily obtained from 

E s = p v  2 (2) 

where p is the density of the alumina rod, v is the 
sonic velocity in the alumina and the subscript s 
denotes the sonic measurement. 

After the sonic modulus was measured, the 
cylindrical A1203 rods were cut and polished into 
small rectangular beams (~-- 3.8 mm x 9.4 mm x 
50.8 mm). The static Young's modulus was deter- 
mined by three-point bending test on the rectan- 
gular beams with the supporting span being 38 inm. 
This geometry constitutes a large span-to-height 
ratio to eliminate errors introduced by a short 
specimen [7, 8]. The cross-head speed was 
0.05 mm/min. The load and cross-head travel were 
recorded, a typical load-travel chart being illus- 
trated in Fig. 1. The deflection of the specimen 
was obtained from the cross-head travel with a 
correction for machine elasticity. Knowing the 
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Figure 1 A typical bending-test 
curve. 
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Figure 2 The Young's modulus 
of alumina as a function of 
porosity. The solid curve is 
Equation 4 with an applicable 
porosity range from zero to 
0.32. The dotted curve is 
portion of the theoretical curve, 
E2 elf, from Part 1 of this paper. 

deflection ~ and the load P, the Young's modulus 
can be calculated: 

1 P L  a 
E b = -#-~ bh-- ~ (3) 

where L is the supporting span, b the specimen 
width, h the specimen height, as shown in Fig. 1, 
and the subscript b denotes the bending test. 

2 . 3 .  R e s u l t s  

The Young's modulus results from sonic measure- 
ments and bending tests are plotted in Fig. 2. 

At p = 0.4, the bending modulus has a smaller 
value than does the sonic modulus. This is due to 
the high porosity, causing local deformation and 
specimen damage under the loading points. The 
cross-head registers true deflection, as well as local 
deformation and damage, resulting in a decreased 
E b. It should also be noted that at p ~--0.4, high 
porosity causes severe data scatter. 

The data points suggest that the 100-Series and 

the 300-Series data fall on a common curve at high 
densities, p = 0 t o p  "~ 0.32 (see Section 3.1 below). 

If  we were to extend the curve to p ~ 0.32 ~ 0.4, 
the curve would split into two curves with the 
300-Series curve being slightly above the 100- 
Series curve, indicating a higher Young's modulus 
for the 300-Series material at low densities. This is 
because it is easier to close-pack spherical particles, 
so the 100-Series material has a higher initial 
packing density than does the egg-shaped 300 
Series. In order for the 300-Series material to 
reach the packing density of  the 100-Series 
material, a certain degree of  densification is 
required, which causes neck formation in the 
300-Series material while the 100-Series material 
is still only under point contact. Therefore, the 
300-Series material has a more developed skeleton, 
hence a higher Young's modulus, at low densities. 
But the difference decreases in skeleton formation 
(i.e. the Young's modulus) between the two series 
with increasing density, and, hence, the data points 
fall on a common curve at high densities. 
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3. Discussion 
3.1. Testing of Equation 1 
From a visual inspection of Fig. 2, the data points 
can be connected by a smooth curve from p = 0 
to p =0.32, followed by a sharp decrease at 
p " 0 . 4 .  According to Part 1, the data points 
between p =0.05 and p =0.32 can be satis- 
factorily described by Equation 1, a higher-power 
term (or terms) being required to account for the 
results at p ~ 0.4. 

To test Equation 1, the results from p = 0.05 
to p = 0 . 3 2  (a total of 28 data points) were 
analysed by a least-squares method, yielding 

E = 58.1 x 10 6 exp [-- (1.46p + 9.82p2)] psi 

(4a) 
or  

E = 4.01 • 105 exp [-- (1.46p + 9.82p2)] MPa. 

(4b) 

Equation 4 is plotted as a solid line in Fig. 2. The 
dotted curve is a portion of the theoretical curve, 
E~ gf, from Part 1 of this paper. It can be seen from 
the close agreement between the theoretical curve 
and the experimental results that the present model 
is realistic. The slight difference between the solid 
and the dotted curves is a reflection of the differ- 
ence in stacking patterns, irregular against simple 
cubic. 

For comparison, Spriggs I equation [3] and the 
Hashin-Hasselman equation [9, 10] will be con- 
sidered here because Spriggs' correlation is the 
best available empirical correlation and Hashin- 
Hasselman equation is the most widely used theor- 
etical equation to date. The Spriggs' correlation 

E = E0 exp (-- bp) (5) 
predicts a straight-line relation between porosity 
and the natural logarithmic of the Young's 
modulus. The Hashin-Hasselman equation [9, 10] 

Ap ] 
E = Eo 14 1 - - ( A + l ) p  (6) 

can be rearranged into 

1 1 p 
- + B (7)  

E Eo 1 --p 

where B = -- (A/Eo). Equation 7 predicts a straight 
line when 1/E is plotted against p/(1 --p). 

To test Spriggs' equation and the Hashin- 
Hasselman equation, the 28 data points from 
p = 0.05 to p = 0.32 are plotted, respectively, in 

Fig. 3 and Fig. 4. After a least-squares analysis, 
Spriggs' equation becomes 

E = 75.7 x 106 exp (-- 5.16p) psi (8a) 
or  

E = 5.22 x l0 s exp (-- 5.16p) MPa (8b) 

and the Hashin-Hasselman equation becomes 

1 ( 1 0.138 p )psi_l  (9a) 
= 242x106 + 106 1- -p  

or  

1 _ ( 1 2.002 p )MPa_l (9b) 
/~ 16.7 x l 0  s l0 s 1 p 

Equations 8 and Equations 9 are plotted, respec- 
tively, in Fig. 3 and Fig. 4. It is apparent that 
Equation 1 fits the experimental result (from 
p = 0.05 to p = 0.32) better than do Equation 5 
and Equation 7. 

3 . 2 .  I n t r i n s i c  Young's  modulus  
The intrinsic zero-porosity Young's modulus for 
A1203, Eo, reported by various investigators is 
fairly uniform in the vicinity of 58 x 106 ~ 60 x 
10 6 psi (4.00 • l0 s ~ 4.14 x 105 MPa) [3, 11]. The 
optimum manner of obtaining E0 is through 
measurements directly from zero-porosity speci- 
men or by extrapolation from a sufficient number 
of low-porosity (preferably less than 5% porosity) 
specimens. For situations such as the present 
case, where only a limited number of low-porosity 
data are available, the extrapolation of high. 
porosity data to zero porosity should be avoided. 
Fortunately, in this study it was possible to 
extrapolate correctly to Eo = 58.1 X 10 6 p s i  

(4.01 x l0 s MPa). This is because Equation 1 is an 
excellent correlation, coupled with a large number 
of auxiliary data from p 20.20 to p "~ 0.32 to 
compensate for the lack of high-density data. 
Since Spriggs' equation and the Hashin-Hasselman 
equation do not show good correlation, the extra- 
polated value of Eo may be incorrect. It is, in fact, 
shown by Equations8 and Equations9 that 
Spriggs' correlation predicts Eo to be 75.7 x 10 6 psi 
(5.22 • 10 s MPa) and the Hashin-Hasselman 
equation predicts Eo to be 242 • 10 6 psi (16.7 x 
10SMPa), which are in disagreement with the 
value olEo well established in the literature. 

3.3. Pore s t ructure  and porosi ty range 
The incorrect Eo-value is not a reflection of the 
validity of Spriggs' or the Hashin-Hasseiman 
equation. But rather, it means that each equation 
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Figure 3 Spriggs' plot. A total of 
28 data points (from p = 0.05 
to p = 0.32) axe in this plot. 
The solid line is obtained by 
least-squaxes analysis. 

has its own intended application. For example, the 
Hashin-Hasselman equation is meant  for isolated 
pores [9, 10]. The data at p ~--0.20 to p "~ 0.32 
correspond to interconnected pores and should 
not have been included in Hashin-Hasselman 
analysis. Since at p ~--0.20 the porosity is much 
less open than it is at p ~ 0.32, let us assume that  
the pores at p "~0 .20  can be analysed by the 
Hashin-Hasselman equation without being too 
erroneous. Then let us only consider those data 
points from p~--0.05 to 0.20; a least-squares 
analysis will result in 1lEo = 0.0148 x l 0  -6 psi -1 
(0.215 X 10 -s MPa-I),  or Eo = 67.5 x 10 6 psi 
(4.66 x l0  s MPa), a much acceptable value. 
Similarly, as discussed in Part 1, Spriggs' equation 
is a good correlation if the porosity range is not 
too wide. For example, if we narrow down the 
porosity range to p ~< 0.20, the resulting Eo from 
least-squares becomes 61.6 x 10 6psi  (4.25 x 

l0  s MPa), very close to the E0 value established 
in the literature. 

It can be seen from the above discussion that, 
in selecting a suitable modulus-poros i ty  equation, 
it is important that proper consideration be given 
to the pore structure and the porosity range in 
question. The Hashin-Hasselman equation is f o r  
closed pores. Spriggs' equation is for both open 
and closed pores and for relatively small porosity 
ranges. The relation proposed in Part 1 of  this 
paper is for both open and closed pores over a 
wider porosity range, and is capable of  treating 
the transition of  the pore structure from open to 
closed. 

3.4. Nonspherical particles 
It is interesting to find that the theoretical analysis 
of  Part 1, which was based on spherical particles, 
applies not only to the spherical 100 Series, but 
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Figure 4 Hashin-Hasselman 
plot. A total of 28 data points 
(from p = 0 . 0 5  to p = 0 . 3 2 )  
are in this plot. The solid line 
is obtained by least-squares 
analysis. 
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also to the nonspherical 300 Series. This is because 
of the fact that densification leads to a deviation 
from the particle's original shape, converting it 
into a polyhedron. The difference between a 
spherical particle and a nonspherical particle 
becomes less and less distinguishable as both 
approach polyhedrons during densification. There- 
fore, Equation 1 can also be applied to non- 
spherical particles. 

4. Summary 
The Young's modulus was determined by sonic- 
velocity measurements and bending tests on two 
batches of porous A1203. The first batch was 
comprised of spherical powder and the second 
was made of egg-shaped powder. The pore struc- 
ture is interconnected at low densities and becomes 
disconnected at high densities. The current data 
can be described by the model proposed in Part 1 
of this study. The zero-porosity Young's modulus 
Eo is determined to be 58.1 • (4.01 x 
l0 s MPa), in good agreement with that reported 
in the literature. 
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